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Abstract— The platooning of autonomous vehicles has the
potential to significantly improve traffic capacity, enhance
highway safety, and reduce fuel consumption. This paper studies
the scalability limitations of large-scale vehicular platoons moving
in rigid formation, and proposes two basic ways to improve
stability margins, i.e., enlarging information topology and
employing asymmetric control. A vehicular platoon is consid-
ered as a combination of four components: 1) node dynamics;
2) decentralized controller; 3) information flow topology; and
4) formation geometry. Tools, such as the algebraic graph theory
and matrix factorization technique, are employed to model
and analyze scalability limitations. The major findings include:
1) under linear identical decentralized controllers, the stability
thresholds of control gains are explicitly established for platoons
under undirected topologies. It is proved that the stability
margins decay to zero as the platoon size increases unless there
is a large number of following vehicles pinned to the leader and
2) the stability margins of vehicular platoons under bidirectional
topologies using asymmetric controllers are always bounded away
from zero and independent of the platoon size. Simulations with
a platoon of passenger cars are used to demonstrate the findings.

Index Terms— Autonomous vehicles, decentralized control,
platoon, scalability, stability margin.

I. INTRODUCTION

DURING the past few decades, the increasing traffic
demand brings a heavy burden on the existing transporta-

tion infrastructure and sometimes leads to a heavily congested
road network [1]. The platooning of autonomous vehicles
has the potential to improve traffic capacity and smoothness,
enhance highway safety, and reduce fuel consumption [2],
which has recently received extensive research interests
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(see [2]–[6], and the references therein). The main objective
of vehicular platoon control is to ensure that all the vehicles
maintain the desired speed and keep a prespecified formation
geometry that is dictated by the intervehicle spacing policy.

To the best of our knowledge, the earliest practices on
platoon control date back to the PATH program during the
late 1980s in California [4]. Since then, many topics have
been discussed for platoon control, such as selection of
spacing policies [5], [6], the influence of information flow
topologies [7]–[10], powertrain dynamics and communication
delay [11], [12], and homogeneity and heterogeneity [13].
In addition, many advanced control methods have been intro-
duced into platoon automation to achieve better performances.
For instance, Liang and Peng [14] proposed an optimal control
strategy for the upper-level controller to guarantee string
stability. Stankovic et al. [15] used the inclusion principle to
decompose an interconnected vehicular platoon into locally
decoupled subsystems, for which decentralized overlapping
controllers were designed. Dunbar and Caveney [16] proposed
a distributed receding horizon controller for vehicular platoon,
and derived the sufficient conditions to ensure asymptotic
stability. More recently, some demos of vehicular platoon have
been performed in the real world, including the GCDC in the
Netherlands [17], SARTRE in Europe [18], and Energy-ITS
in Japan [19]. A recent review on platoon control can be found
in [20].

One recent research focus of platooning is on finding
the essential performance limitation of large-scale platoons,
e.g., the bound of error amplification, trend of stabil-
ity deterioration, and scalability with increasing platoon
size [21]–[29]. Seiler et al. [21] showed that due to a comple-
mentary sensitivity integral constraint, there was a scalability
limitation for platoon with linear identical controllers under
predecessor-following topology. Barooah and Hespanha [22]
further pointed out that for a homogeneous platoon under
bidirectional (BD) topology, linear identical controllers also
suffered fundamental limitation on the closed-loop sta-
bility due to amplified spacing errors and disturbances.
Middleton and Braslavsky [23] extended the work in [21] by
considering heterogeneous vehicle dynamics, limited commu-
nication range, and nonzero time headway policy within the
platoon formulation, and showed that both forward communi-
cation range and small time headway cannot alter the string
instability. Even for general undirected information flow (UIF)
topology, under which vehicles can obtain information beyond
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their nearest neighbors, Darbha and Pagilla [24] pointed out
the limitation of identical controllers to maintain a rigid
formation and indicated that there was a critical platoon size
beyond which the motion would lose stability.

The following two major approaches have been proposed
to analyze the above-mentioned performance limitations and
improve the scalability of large-scale platoons.

1) The matrix theory-based approach that directly analyzes
the limit of stability and performance in the time domain.

2) The partial differential equation (PDE) approximation-
based approach that approximates the platoon dynamics
into a continuous PDE and then studies the eigenvalues
of the corresponding PDE.

Using the first approach, Lin et al. [27] investigated the scal-
ability of a large-scale vehicular platoon with an optimal
controller design and showed that nonsymmetric controllers
can yield better scaling trends and enhance formation coher-
ence. For high-dimensional formations, Bamieh et al. [25]
demonstrated that localized symmetric feedback can also reg-
ulate large-scale disturbances. In [29], it was shown that the
asymmetric control gains can make the control architecture
highly scalable, since the stability margin of the closed loop
can always be bounded away from zero. Using the second
approach, i.e., the PDE approximation, Barooah et al. [26]
showed that the closed-loop stability margin could be signif-
icantly improved by introducing small amounts of mistuning
to symmetric control gain. Adopting similar strategies to [26],
Hao et al. [28] proved that the scaling law for the stability
margin could be significantly improved by employing a higher
dimensional information flow topology or by introducing small
asymmetry in the control gain. In summary, both approaches
are able to analyze the scalability of the vehicular platoon.
However, for the first approach, most research relies on the
assumption of idealized double-integrator models for vehicle
dynamics. The assumption of double integrators simplifies
the mathematical analysis, but does not capture many prac-
tical characteristics, e.g., inertial lags in powertrain dynamics,
which should not be neglected in real-world implementa-
tion [11], [14], [15], [17]. For the second approach, the PDE
approximating technique can avoid the difficulties of analyzing
high-dimensional matrices and gain insights into the effect of
local controllers on the scalability, but it inevitably introduces
approximation errors and is suitable only for vanishingly small
asymmetric structures because of using perturbation theory.
In addition, the PDE technique is applicable only to limited
kinds of information topologies, like BD topology [26], [28].

In this paper, we directly take inertial lags of powertrain
dynamics into consideration for the stability margin analysis
of large-scale platoons. This consideration provides more
accurate prediction of the scalability limitation in real-world
implementation. Moreover, the stability margin analysis is
conducted based on the high-dimensional matrix factorization
instead of the PDE approximation. The benefit is that we can
not only model more general undirected topologies, but also
extend the analysis to the case of a large asymmetric control.
By employing tools, such as algebra graph theory, matrix
factorization, and eigenvalue analysis, the analysis further
shows how to improve the stability margin of a homogeneous

platoon in terms of topology selection and control adjustment
from a unified viewpoint. The main contributions of this paper
are as follows.

1) A closed-loop stability theorem for homogeneous
platoons interconnected by the UIF topology is
derived using the Routh–Hurwitz stability criterion and
Rayleigh–Ritz theorem. This theorem explicitly estab-
lishes the stabilizing thresholds of linear control gains
and characterizes the scalability limitation for platoons
under the UIF topology. Moreover, it is shown that
extending information flow to reduce the tree depth is
one major way to recover the loss of stability margins
and achieve a scalable platoon. The results in this
theorem are extensions of [9] and [24], in which inertial
lags of vehicle powertrains were neglected and each
vehicle was modeled as a point mass.

2) Under an asymmetric control structure, the scalability of
platoons under the BD topology is established, which
indicates that employing asymmetric control is another
way to improve stability margins of large-scale platoons.
The proof is based on the matrix factorization technique
and eigenvalue analysis, showing that the stability mar-
gin of such a platoon is bounded away from zero and
independent of the platoon size. This finding conforms
to the results in [26] and [28], which adopted the PDE
approximation and was suitable only for vanishingly
small asymmetric structures. The matrix-based approach
is used in this paper, and as such, the results are more
accurate and can be extended to larger asymmetric
degrees. In addition, our finding greatly extends the main
results in [29], in which the double-integrator model is
used, which makes stability analysis straightforward, but
departs from the reality of powertrain dynamics.

The remainder of this paper is organized as follows.
Section II introduces the problem formulation of platoon
control. Section III presents two theorems for homogeneous
platoon: 1) the closed-loop stability and scalability theorem
for the UIF topology with identical controllers and 2) the
scalability theorem for the BD topology with asymmetric
controllers. Numerical simulations are shown in Section IV.
Finally, Section V presents the conclusion.

II. PROBLEM FORMULATION

This paper considers a platoon on a flat road (see Fig. 1),
which aims to move at the same speed while maintaining a
rigid formation geometry. The platoon has N + 1 vehicles (or
nodes), including a leading vehicle indexed by 0 and N fol-
lowing vehicles indexed from 1 to N .

As demonstrated in Fig. 1, a platoon consists of four main
components: 1) vehicle dynamics; 2) decentralized controller;
3) information flow topology; and 4) formation geometry. The
vehicle dynamics describe the behavior of each node; the infor-
mation flow topology defines how nodes exchange information
with each other; the decentralized controller implements feed-
back control for each vehicle; and the formation geometry
dictates the desired distance between any two successive
nodes.
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Fig. 1. Four major components of a platoon. 1) Vehicle dynamics.
2) Information flow topology. 3) Decentralized controller. 4) Formation
geometry. dr is the actual relative distance, ddes is the desired distance, ui is
the control signal for the i th vehicle, and C denotes the controller.

Notations: The real and complex domains are denoted by
R and C, respectively. The real part of a complex number
s ∈ C is denoted by Re(s), and the imaginary part by
Im(s). The set of m × n real matrices is denoted by R

m×n .
The transpose of a vector or a matrix A is denoted by AT .
We define 1n = [1, 1, . . . , 1]T ∈ R

n×1, and use In as the
identity matrix of dimension n. Let σi (A) denote the
i th eigenvalue of matrix A ∈ R

n×n , i = 1, 2, . . . , n, and all its
eigenvalues are represented in an increasing order of their real
parts, i.e., Re(σmin(A)) ≤ Re(σ2(A)) ≤ · · · ≤ Re(σn−1(A)) ≤
Re(σmax(A)). The spectrum of A is denoted by S(A) =
{σmin(A), . . . , σmax(A)}. diag{a1, a2, . . . , an} denotes a diag-
onal matrix whose diagonal entries starting at the upper left
corner are a1, a2, . . . , an . Let A ∈ R

m×n and B ∈ R
p×q , then

A ⊗ B is the Kronecker product of A and B

A ⊗ B =
⎡
⎢⎣

a11 B · · · a1n B
...

. . .
...

am1 B · · · amn B

⎤
⎥⎦ ∈ R

mp×nq .

A. Model for Node Dynamics

The platoon is assumed to be homogeneous, as studied
in [7]–[9], [21], and [22]. The longitudinal dynamics of each
node are composed of engine, drive line, brake system, aerody-
namics drag, tire friction, rolling resistance, and gravitational
force. The following assumptions are used [5], [11], [30], [31].

1) The powertrain dynamics are lumped into a first-order
inertial transfer function.

2) The vehicle body is considered to be rigid and
symmetric.

3) The influence of pitch and yaw motions is neglected.
4) The driving and braking torques are integrated into one

control input.
Then, the model of vehicle longitudinal dynamics becomes
⎧⎪⎪⎨
⎪⎪⎩

ṡi (t) = vi (t)

v̇i (t) = 1

M

(
ηT

Ti (t)

Rw
− CAv2

i − Mg f

)
, i = 1, 2, . . . , N

τ Ṫi (t) + Ti (t) = Ti,des(t)

(1)

where si (t) and vi (t) denote the position and velocity of
node i , respectively, M is the vehicle mass, CA is the

coefficient of aerodynamic drag, g is the gravity con-
stant, f is the coefficient of rolling resistance, Ti (t) is the
actual driving/braking torque, Ti,des(t) denotes the desired
driving/braking torque, τ is the inertial lag of vehicle longitu-
dinal dynamics, Rw is the tire radius, and ηT is the mechanical
efficiency of the driveline. The position, velocity, and accelera-
tion of the leader are denoted by s0(t), v0(t), and a0(t), respec-
tively. The leader tracks a constant speed reference trajectory,
i.e., a0(t) = 0, s0 = v0t .

The exact feedback linearization technique is used to
convert the nonlinear model (1) into a linear one. The
same technique has been widely used in platoon control
(see [7], [11], [15]). The output of position with relative
degree three is used to construct the feedback linearization
law, as shown in the following:

Ti,des(t) = 1

ηT
(CAvi (2τ v̇i + vi ) + Mg f + Mui ) Rw (2)

where ui is the control input after linearization. Then, we have

τ ȧi (t) + ai (t) = ui (t) (3)

where ai (t) = v̇i (t) denotes the acceleration of node i . For
the sake of platoon control, a third-order state-space model is
derived for node i

ẋi (t) = Axi (t) + Bui(t)

A =
⎡
⎢⎣

0 1 0
0 0 1

0 0 − 1

τ

⎤
⎥⎦, B =

⎡
⎢⎣

0
0
1

τ

⎤
⎥⎦ (4)

where xi (t) = [si , vi , ai ]T is the state of node i , and ui (t) is
the control input of node i after linearization.

B. Model for Information Flow Topology

The information flow among the platoon is modeled by a
directed graph G = {V , E}, in which V = {0, 1, 2, . . . , N}
is the set of nodes and E ⊆ V × V is the set of edges in
connection. The following three matrices are used to represent
the properties of information flow modeled by G: 1) adjacent
matrix A; 2) Laplacian matrix L; and 3) pinning matrix P .
This technique is known as the algebraic graph theory [32],
which has been widely used in the area of multiagent control
or networked control [8], [32], [33].

The adjacent matrix associated with graph G is defined as
A = [ai j ] ∈ R

N×N with each entry defined as
{

ai j = 1, if { j, i} ∈ E

ai j = 0, if { j, i} /∈ E,
i, j = 1, . . . , N (5)

where { j, i} ∈ E means there is a directional edge from node j
to node i , i.e., vehicle i receives the information of vehicle j
by either wireless communication or radar-based detection.
It is assumed that there are no self-loops, i.e., aii = 0,
i = 1, . . . , N . Node j is said to be a neighbor of node i
if ai j = 1, and the neighbor set of node i is denoted by

Ni = { j |ai j = 1}.
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The Laplacian matrix L = [li j ] ∈ R
N×N associated with

graph G is defined as

li j =

⎧⎪⎪⎨
⎪⎪⎩

−ai j , i �= j
N∑

k=1

aik , i = j,
i, j = 1, . . . , N. (6)

The pinning matrix P represents how each follower connects
to the leader, defined as

P = diag{p1, p2, . . . , pN } (7)

where pi = 1 if edge {0, i} ∈ E ; pi = 0 otherwise. If pi = 1,
vehicle i is said to be pinned to the leader. We define leader
accessible set of node i as

Pi =
{

{0}, if pi = 1

∅, if pi = 0.

It is assumed that the graph G contains at least one
spanning tree rooting from the leader for the controllability
of system [33]. A spanning tree is a tree formed by graph
edges that connect all the nodes of the graph. In other words,
the leader is globally reachable and every follower can obtain
the leader information directly or indirectly.

C. Design of Decentralized Controllers

The objective of platoon control is to track the speed of the
leader while maintaining a rigid formation governed by the
constant distance policy⎧⎨
⎩

lim
t→∞ ‖vi (t) − v0(t)‖ = 0

lim
t→∞ ‖si−1(t) − si (t) − di−1,i‖ = 0,

i = 1, 2, . . . , N

(8)

where di−1,i is the desired space between nodes i − 1 and i .
The selection of di−1,i determines the geometry formation of
the vehicular platoon. Here, the constant spacing policy is
used for the benefit of high traffic throughput, which has been
widely used before (see [7], [9], [16], [21], [22], [24]–[29]).

The local controller of node i only uses its neighborhood
information specified by Ii = Ni ∪ Pi . This local controller is
linear

ui (t) = −
∑
j∈Ii

[ki j,s(si − s j − di, j ) + ki j,v (vi − v j )

+ ki j,a(ai − a j )] (9)

where ki j,# (# = s, v, a) is the controller gain. A control
law satisfying (9) is said to have structure G, whereas an
unstructured control law is one that corresponds to a complete
graph that requires communications between any pair of
vehicles. It should be noted that we are interested in static
and linear control laws governed by G. Thus, a communication
link, if it exists, is assumed to be perfect in the sense that we
ignore the effects such as quantization issues, data dropouts,
and data delay.

To rewrite (9) into a compact form, we define the new
tracking error x̃i (t) for node i

x̃i (t) = xi (t) − x0(t) − d̃i (10)

where d̃i = [di,0, 0, 0]T . Then, (9) is rewritten into

ui (t) = −
∑
j∈Ii

kT
i j (x̃i − x̃ j ) (11)

where ki j = [ki j,s , ki j,v , ki j,a]T ∈ R
3×1 is the vector of control

gains for node i .

D. Formation of Closed-Loop Platoon Dynamics

To derive the platoon dynamics, we define X =
[x̃ T

1 , x̃ T
2 , . . . , x̃ T

N ]T ∈ R
3N×1 and U = [u1, u2, . . . , uN ]T ∈

R
N×1 for the N followers. Then, we have the collective

dynamics of nodes from 1 to N is

Ẋ = IN ⊗ A · X + IN ⊗ B · U (12)

with IN ⊗A ∈ R
3N×3N , IN ⊗B ∈ R

3N×N . By (11), the control
law governed by G is

U = −K T (G) · X (13)

with K (G) = {ki, j } ∈ R
3N×N , defined as

ki j =

⎧⎪⎪⎨
⎪⎪⎩

−ai j · ki j , i �= j

−
N∑

w=1,w �=i

kiw + pi ki0, i = j
(14)

where ki j ∈ R
3×1, i, j = 1, . . . , N . Substituting (13)

into (12), the closed-loop dynamics of the homogeneous
platoon are

Ẋ = {IN ⊗ A − IN ⊗ B · K T (G)} · X. (15)

The closed-loop dynamics are a function of four com-
ponents: 1) vehicle longitudinal dynamics, represented
by A and B; 2) information flow topology, represented
by G; 3) decentralized control law, represented by K (G); and
4) geometry formation, included in X as the desired dis-
tance [see (10)]. Note that K (G) is structured, governed by
information flow topology G and control gain ki j . In this
paper, we focus on the information flow topology G and
control gain ki j to study the scalability limitation of large-
scale platoons.

1) Closed-Loop Dynamics for Platoon Under UIF Topology
With Linear Identical Controllers: A platoon is said to be
under UIF topology if G is undirected when restricted to the
set of followers, i.e., j ∈ Ni ⇔ i ∈ N j , i, j = 1, 2, . . . , N .
Under the UIF topology, we limit our discussion to linear
identical controllers, i.e., ki j = k = [ks, kv, ka]T ∈ R

3×1,
i, j = 0, . . . , N . Then, K (G) is simplified to

K (G) = −(LUIF + PUIF) ⊗ k (16)

where LUIF and PUIF are the L and P associated with the UIF
topology, respectively. Therefore, the closed-loop dynamics
for platoon under the UIF topology with linear identical
controllers become

Ẋ = Ac,UIF · X (17)

where Ac,UIF ∈ R
3N×3N , defined as

Ac,UIF = IN ⊗ A − (LUIF + PUIF) ⊗ BkT . (18)
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Fig. 2. Definition of h-neighbor UIF topology.

Fig. 3. Platoon under the BD topology.

In fact, the UIF topology includes a large class of topolo-
gies. One most commonly used variant is the h-neighbor UIF
topology, as shown in Fig. 2.

Definition 1 (h-Neighbor UIF Topology): The information
flow topology is said to be an h-neighbor UIF topology, if
each follower can reach its nearest h neighbors in the set of
followers, i.e., Ni = {i − h, . . . , i + h} ∩ {1, . . . , N}\{i}, no
matter how many followers are pinned to the leader.

In the h-neighbor UIF topology, h represents the range of
reliable wireless communication. This topology is said to be
strong connected if h = N − 1, i.e., every follower can reach
all the other followers.

2) Closed-Loop Dynamics for Platoon Under BD Topology
With Linear Asymmetric Controller: Another focus of this
paper is the asymmetric control, which has been revealed to
be beneficial for scalability. For asymmetric control, only the
BD topology is discussed for simplicity. Under the BD topol-
ogy, decentralized controllers can only receive the information
from its nearest, i.e., front and back, neighbors, as shown
in Fig. 3.

Under the BD topology, the linear control law (11) is
specified as

⎧⎪⎨
⎪⎩

ui (t) = −(
k f

i

)T
(x̃i − x̃i−1) − (

kb
i

)T
(x̃i − x̃i+1),

i = 1, . . . , N − 1

uN (t) = −(
k f

N

)T
(x̃N − x̃N−1)

(19)

where k f
i = [k f

i,s , k f
i,v , k f

i,a ]T ∈ R
3×1 is the control gain for

the front node and kb
i = [kb

i,s , kb
i,v , kb

i,a ]T ∈ R
3×1 is the control

gain for the back node.
Definition 2 (Asymmetric Control): The controller is called

asymmetric, if{
k f

i = (1 + ε)k, kb
i = (1 − ε)k i = 1, . . . , N − 1

k f
N = (1 + ε)k

(20)

where ε ∈ (0, 1) is called the asymmetric degree. Note that
if ε = 0, then (20) is reduced to the symmetric case. The
definition above reduces K (G) into

K T (G) = (LBD + PBD)ε ⊗ kT (21)

where (LBD + PBD)ε incorporates the L + P associated with
the BD topology and the asymmetric degree ε

(LBD + PBD)ε

=

⎡
⎢⎢⎢⎢⎢⎣

2 −1 + ε
−1 − ε 2 −1 + ε

. . .
. . .

. . .

−1 − ε 2 −1 + ε
−1 − ε 1 + ε

⎤
⎥⎥⎥⎥⎥⎦

. (22)

Therefore, the closed-loop dynamics for platoon under the
BD topology with linear asymmetric controllers become

Ẋ = Ac,BD · X (23)

where Ac,BD ∈ R
3N×3N , defined as

Ac,BD = IN ⊗ A − (LBD + PBD)ε ⊗ BkT . (24)

III. METHODS TO IMPROVE THE STABILITY MARGIN

This section focuses on the stability margin analysis of
homogeneous platoons moving in a rigid formation. We first
need to clarify the definitions of stability, scalability, and
stability margin of a platoon.

Definition 3 (Stability): A platoon with linear time invariant
dynamics is said to be stable if the closed-loop system has
eigenvalues with strictly negative real parts, i.e., in the open
left half of the complex plane [28], [29].

Definition 4 (Scalability): A platoon is said to be scalable,
if all the stable closed-loop eigenvalues are bound away from
zero and independent of the platoon size [29].

Definition 5 (Stability Margin): The stability margin of a
platoon is defined as the absolute value of the real part of the
least stable eigenvalue [26], [28].

In this section, two theorems will be proved for homoge-
neous platoons both under the UIF topology with identical
controllers and under the BD topology with asymmetric con-
trollers. These two theorems point out the scalability limitation
of large-scale platoons, and provide two basic ways to improve
the stability margin, i.e., enlarging information topology and
employing asymmetric control.

A. Stability and Scalability of Platoon Under UIF Topology
With Linear Identical Controllers

Before we present the first theorem, we need the following
lemmas.

Lemma 1 [32]: For any information flow topology,
all the eigenvalues of L have nonnegative real parts,
i.e., Re[σi (L)] ≥ 0, i = 1, 2, . . . , N . Zero is an eigenvalue
of L, with 1N = [1, 1, . . . , 1]T ∈ R

N×1 as the corresponding
eigenvector, i.e., L · 1N = 0.

Lemma 2 [35], [36]: All the eigenvalues of L + P are
located in the open right half plane, i.e., Re[σi (L + P)] > 0,
i = 1, 2, . . . , N , when graph G contains a spanning tree
rooting from the leader.

Lemma 3 [34]: Let a symmetric matrix Q = QT = [qi j ] ∈
R

n×n and x ∈ R
n×1. Then, we have

σmax(Q) = max
x �=0

x T Qx

x T x
, σmin(Q) = min

x �=0

x T Qx

x T x
.

This is the well-known Rayleigh–Ritz theorem.
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Lemma 4 [35]: Given a real polynomial

p (s, λ) = s3 + λk3 + 1

τ
s2 + λ

k2

τ
s + λ

k1

τ
(25)

where s denotes the independent variable, k1, k2, k3, and
τ are nonzero constant real numbers, and λ ∈ R. If (25) is
asymptotically stable, then it has the following.

1) Equation (25) has one characteristic root approaching
−1/τ and two characteristic roots approaching zero with
rate O(λ) when λ goes to zero.

2) Equation (25) has no characteristic roots close to zero
(or imaginary axis) unless λ is close to zero.

The first theorem of this paper is stated as follows.
Theorem 1: Consider a homogeneous platoon under the

UIF topology with linear identical controllers given by (17).
1) Platoon (17) is asymptotically stable if and only if⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ks > 0

kv > ksτ/ min
i∈{1,...,N}(λi ka + 1)

ka > −1/ max
i∈{1,...,N}(λi )

(26)

where λi is the i th eigenvalue of LUIF + PUIF.
2) The stability margin for platoon (17) decays to zero as

the platoon size N increases, unless there exists a large
number of followers, i.e., O(N), that are pinned to the
leader.

Proof: By Lemma 2, Re{λi } > 0. From
Definitions 6 and 7, we know that LUIF is symmetric, i.e.,
LT

UIF = LUIF, and PUIF is a diagonal matrix. Hence,
LUIF + PUIF is also symmetric, indicating λi ∈ R,
i = 1, 2, . . . , N .

As a result, there exists a unitary matrix W such that

W−1 · (LUIF + PUIF) · W = �UIF (27)

where �UIF ∈ R
N×N is a diagonal matrix with the eigenvalues

of LUIF + PUIF being the diagonal entries

�UIF =

⎡
⎢⎢⎢⎣

λmin
λ2

. . .

λmax

⎤
⎥⎥⎥⎦.

Then, the similarity transformation of Ac,UIF gives a block
triangular matrix

Ãc,UIF = (W ⊗ IN )−1 · Ac,UIF · (W ⊗ IN )

= (W ⊗ IN )−1 · (IN ⊗ A − (LUIF + PUIF) ⊗ BkT )

· (W ⊗ IN ) = IN ⊗ A − �UIF ⊗ BkT (28)

which leads to

S(Ac,UIF) = S( Ãc,UIF) =
N⋃

i=1

{S(A − λi BkT )}. (29)

Therefore, platoon (17) is asymptotically stable if and
only if A − λi BkT , i = 1, 2, . . . , N are all Hurwitz. The
characteristic polynomial of matrix A − λi BkT is

|s I − (A − λi BkT )| = s3 + λi ka + 1

τ
s2 + λi kv

τ
s + λi ks

τ
.

(30)

The stability of (30) is examined using the Routh–Hurwitz
stability criterion, shown in

s3 1
λi kv

τ

s2 λi ka + 1

τ

λi ks

τ

s1 λi kv(λi ka + 1) − λi ksτ

τ (λi ka + 1)

s0 λi ks

τ
. (31)

Given the fact τ > 0, λi > 0, i = 1, 2, . . . , N , (30) is
asymptotically stable if and only if

⎧⎪⎨
⎪⎩

ks > 0

kv > ksτ/(λi ka + 1), i = 1, . . . , N

ka > −1/λi .

(32)

Thus, platoon (17) is asymptotically stable if and only
if (26) are satisfied.

To prove Theorem 1 (1.2), based on Lemma 3, we know

λmin ≤ x T (LUIF + PUIF) x

x T x
∀x ∈ R

N×1. (33)

Therefore, by choosing x = 1N ∈ R
N×1, we obtain

λmin ≤ x T (LUIF + PUIF)x

x T x
= x T LUIFx + x T PUIFx

N
. (34)

From the definition of pinning matrix (7), we have

x T PUIFx =
N∑

i=1

pi = �(N) (35)

where �(N) denotes the number of followers that are pinned
to the leader. Hence, based on Lemma 1, the upper and lower
bounds for the least eigenvalue of LUIF + PUIF are given by

0 < λmin ≤ x T LUIFx + x T PUIFx

N
= �(N)

N
. (36)

If there are not enough followers connected to the leader,
i.e., �(N) is independent of the platoon size N , then we have

∀ε > 0, ∃N > 0, s.t.,
�(N)

N
< ε. (37)

Based on (36) and (37), we know that λmin can be suffi-
ciently close to zero as the platoon size N become sufficiently
large (note N can also be a finite number). Based on Lemma 4,
two characteristic roots of A−λmin BkT approach zero as λmin
goes to zero. Under this circumstance, the stability margin for
platoon (17) decays to zero as the platoon size N becomes
sufficiently large.

If the number of followers connected to the leader satisfies

�(N)

N
= const ∈ (0, 1 ] ⇒ �(N) = O(N) (38)

it is possible that the stability margin for platoon (17) does not
decay to zero as the size of platoon increases, which implies
that the scalability of platoon (17) may be guaranteed.

Remark 1: Theorem 1 (1.2) explicitly establishes the sta-
bilization thresholds of linear control gains for platoons with



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHENG et al.: STABILITY MARGIN IMPROVEMENT OF VEHICULAR PLATOON 7

the UIF topology. The similarity transformation in (28) actu-
ally decomposes a platoon (17) into multiple subsystems.
This kind of technique originated in [8], has been used
in [22], [24], [28], [29], and [36].

Remark 2: Theorem 1 (1.2) demonstrates the scalability
limitation of a platoon under the UIF topology with linear
identical controllers. This conclusion agrees with [9], and [24],
in which the vehicle dynamic was assumed to be a double
integrator. Our research extends their results in [9] [24] by
taking into account the inertial lag in vehicle longitudinal
dynamics.

Remark 3: Theorem 1 (1.2) implies that the information
from the leader is more important than that among the
followers. Even though the topology among the followers is
strongly connected, the scalability of platoon (17) cannot be
guaranteed unless enough followers are pinned to the leader.
Intuitively, the information flow among the followers may help
to regulate the local spacing errors. However, the ultimate
goal for a large-scale platoon is to track the leader. Hence,
enough followers pinned to the leader are required to guarantee
scalability.

Remark 4: If every follower can reach the leader, result-
ing in the topologies like the BD-leader (BDL) topology,
i.e., �(N) = N . It is known that the BDL topology is
scalable [7], [35]. Some topologies like the BD topology
(�(N) = 1) suffers from the fundamental limitation that
the stability margin decays to zero as the platoon size
increases [7], [21], [22], [35].

Remark 5: Theorem 1 (1.1) is a necessary and sufficient
condition for the closed-loop stability, while Theorem 1 (1.2)
is only necessary for scalability. Even though the number of
followers pinned to the leader is �(N) = O(N), the stability
margin may still decay to zero as the platoon size increases.
We argue that to obtain a scalable platoon, the tree depth of
graph G should be a constant and independent of the platoon
size N . Note that, the tree depth in this paper is defined as
follows (which is different from the typical definition in [32]).

Definition 6: Tree depth c is defined as

c = max{n1, n2 − n1, . . . , n p − n p−1, N − n p + 1} (39)

where {n1, n2, . . . , n p}, 1 ≤ n1 ≤ · · · ≤ n p ≤ N is the set of
followers pinned to the leader.

Fig. 4 demonstrates the two UIF topologies. The simu-
lations in Section IV-A show that one of them [Fig. 4(a),
�(N) = O(N), c = N/2] will lose the stability margin
as the platoon size increases, and the other one [Fig. 4(b),
�(N) = O(N) and c is a constant] is scalable.

B. Scalability of Platoon Under BD Topology
With Asymmetric Control

Theorem 1 highlights the importance of topology selection
to the platoon scalability. Enough followers are required to
be pinned to the leader, but at the expense of a large amount
of communication. Asymmetric controllers have also attracted
extensive attention for its potential to reduce the loss of
stability margin as the platoon size increases [26], [28], [29].
This section focuses on a special UIF topology, i.e., the BD

Fig. 4. Platoon with a large number of followers pinned to the leader.
(a) UIF topology contains a spanning tree with a tree depth that is of the
same order as N . (b) UIF topology contains a spanning tree with a constant
tree depth c, which is independent of the platoon size N .

topology (see Fig. 3), to demonstrate how to select asymmetry
decentralized controllers. Before presenting the second theo-
rem, the following lemmas are needed.

Lemma 5 [32]: Suppose that

D̃ =
[

D y
yT dn

]
∈ R

n×n

is a symmetric matrix and D is a (n −1)-by-(n −1) symmetric
matrix. Let γ1 ≤ γ2 ≤ · · · ≤ γn be the eigenvalues of D̃ and
β1 ≤ β2 ≤ · · · ≤ βn−1 be the eigenvalues of D. Then

γ1 ≤ β1 ≤ · · · ≤ βi−1 ≤ γi ≤ βi ≤ γi+1 ≤ · · · ≤ βn−1 ≤ γn.

(40)

Lemma 6 [34]: Let a matrix Q = [qi j ] ∈ R
n×n . Then, all

the eigenvalues of Q are located in the union of the n disks

n⋃
i=1

⎧⎨
⎩λ ∈ C||λ − qii | ≤

n∑
j=1, j �=i

|qi j |
⎫⎬
⎭.

Note that, Lemma 5 is the well-known Cauchy Interlace
Theorem, and Lemma 6 is the Geršgorin Disk Criterion.

The following proposition is derived for comparison.
Proposition 1 [35]: Consider a homogeneous platoon under

the BD topology with symmetric controllers, and assume that
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the controllers satisfy Theorem 1 (1.1). Then, the stability
margin of the platoon decays to zero as O(1/N2).

Note that, Proposition 1 considers the inertial lag of
powertrain dynamics in nodes. This proposition conforms
to [26], and [29], in which the node dynamics are double
integrators.

Theorem 2: Consider a homogeneous platoon under the
BD topology with the asymmetric controller architecture given
by (23).

1) Platoon (23) is asymptotically stable if and only if
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ks > 0

kv > ksτ/ min
i∈{1,...,N}(σi (LP ε)ka + 1)

ka > −1/ max
i∈{1,...,N}(σi (LP ε))

(41)

where LPε denotes (LBD + PBD)ε for simplicity in this
section.

2) For any fixed ε ∈ (0, 1), the stability margin is bounded
away from zero and independent of the platoon size N
(N can be any finite integer).

Proof: To prove Theorem 2 (2.1), we note that LP ε

in (22) is asymmetric. This matrix can be transformed into
a symmetric matrix. Choose S ∈ R

N×N as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 (
1 − ε

1 + ε

) 1
2

. . .
(

1 − ε

1 + ε

) N−1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, we have

L̃Pε = S(LP ε)S−1

=

⎡
⎢⎢⎢⎢⎢⎣

2 −δ
−δ 2 −δ

. . .
. . .

. . .

−δ 2 −δ
−δ 1 + ε

⎤
⎥⎥⎥⎥⎥⎦

(42)

where δ = √
(1 − ε)(1 + ε). According to Lemma 6, all the

eigenvalues of L̃P ε are located in the union of two disks

{λ ∈ C||λ − 2| ≤ 2δ}
⋃

{λ ∈ C||λ − 1 − ε| ≤ δ}. (43)

It is easy to verify 2−2δ > 0, and 1+ε−δ > 0, ∀ε ∈ (0, 1).
Hence, σi (LP ε) = σi (L̃P ε) > 0, i = 1, 2, . . . , N . Then,
using similar techniques as in Theorem 1 (1.1), we have that
platoon (23) is asymptotically stable if and only if (41) is
satisfied.

The proof of Theorem 2 (2.2) proceeds in two steps.
Step 1: We first prove the upper and lower bounds of

σmin(LPε). In fact, L̃P ε can be rewritten as

L̃P ε =
[

Z −e
−eT 1 + ε

]
(44)

where Z ∈ R
(N−1)×(N−1) , e ∈ R

(N−1)×1 are defined as

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −δ
−δ 2 −δ

−δ 2
. . .

. . .
. . . −δ
−δ 2

⎤
⎥⎥⎥⎥⎥⎥⎦

, e =

⎡
⎢⎢⎢⎣

0
0
...
δ

⎤
⎥⎥⎥⎦.

Further, Z is decomposed to Z = 2IN−1 − δ · H , where
H ∈ R

(N−1)×(N−1) is defined as

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1
1 0 1

1 0
. . .

. . .
. . . 1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It is known from [34] that the eigenvalues of matrix H are

σN−i (H ) = 2 cos
iπ

N
, i = 1, . . . , N − 1.

Then, the eigenvalues of Z are

σi (Z) = 2 − 2δcos
iπ

N
, i = 1, . . . , N − 1. (45)

By Lemma 5, we have

σmin(L̃Pε) ≤ σmin(Z) = 2 − 2δcos
π

N
. (46)

Equation (46) actually gives the upper bound of σmin(L̃P ε).
To obtain the lower bound of σmin(L̃P ε), we define

Y = (L̃P ε) − ε2 IN

=

⎡
⎢⎢⎢⎢⎢⎣

2−ε2 −δ

−δ 2−ε2 −δ
. . .

. . .
. . .

−δ 2−ε2 −δ

−δ 1 + ε−ε2

⎤
⎥⎥⎥⎥⎥⎦

. (47)

It is easy to know

1−1

2
ε2 ≥ (1 − ε2)

1
2 = δ ∀ε ∈ (0, 1). (48)

Hence, we have
⎧⎪⎪⎨
⎪⎪⎩

2 − ε2 − 2δ ≥ 2 − ε2 − 2

(
1 − 1

2
ε2

)
= 0

1 + ε − ε2 − δ ≥ 1 + ε − ε2 −
(

1 − 1

2
ε2

)
> 0

∀ε ∈ (0, 1). (49)

According to Lemma 6, and noting that Y is symmetric, all
the eigenvalues of Y are real and nonnegative

σi (Y ) ≥ 0, i = 1, 2, . . . , N.

Considering the definition (47) of Y , we have

σmin(L̃P ε) = σmin(Y ) + ε2 ≥ ε2. (50)
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Based on (42), (46), and (50), we claim that all the
eigenvalues of LP ε are real and σmin(LP ε) will not decay to
zero as the platoon size N increases

2 − 2
√

1 − ε2cos
π

N
≥ σmin(LP ε) ≥ ε2. (51)

Note the basis matrix S is invertible for any finite integer N .
Thus, (51) gives the upper and lower bounds of σmin(LP ε) for
any finite integer N .

Step 2: We then prove that the stability margin is bounded
away from zero and independent of the platoon size N . Using
the similarity transformation as (28), we have that the spectrum
of Ac,BD is expressed as

S(Ac,BD) = S(IN ⊗ A − LPε ⊗ BkT )

=
N⋃

i=1

{S(A − σi (LPε)BkT )}. (52)

The characteristic polynomial of matrix A −σi (LP ε)BkT is

|s I − (A − σi (LPε)BkT )|
= s3 + σi (LP ε)ka + 1

τ
s2 + σi (LP ε)kv

τ
s + σi (LP ε)ks

τ
. (53)

According to (51), for any fixed ε ∈ (0, 1) and any finite
integer N , we have σi (LP ε) ≥ σ min(LPε) ≥ ε2, which means
σi (LPε) is bounded away from zero. Based on Lemma 4,
the eigenvalues of (53) are also bounded away from zero.
Therefore, there is a constant gap between the least stable
closed-loop eigenvalue and the imaginary axis. Moreover, this
gap is independent of the platoon size N (N can be any finite
integer), i.e., the stability margin is bounded away from zero
and independent of the platoon size N .

Remark 6: Compared with Proposition 1, Theorem 2 (2.2)
suggests that asymmetric control can significantly improve the
stability margin of large-scale platoons, which hints that
the controller structure may play a more important role than
the feedback gain design.

Remark 7: Theorem 2 (2.2) shows that the asymmetric
control architecture provides another way to obtain scalable
platoons. This finding conforms to the results in [26] and [28],
which adopted the PDE approximation and were only suitable
for vanishingly small asymmetric structures. This paper proves
the main results using the matrix-based analysis without any
approximation, and as a result provides more accurate predic-
tion and can be used for large asymmetric control. In addition,
our finding is an extension to [29], in which the dynamics of
each node were assumed to be double integrators.

Remark 8: Conditions (26) and (41) need to know the spec-
trum of the Laplacian and pinning matrices, which is unfortu-
nately not readily computable in a distributed way. However,
we can still have some information about the distribution of
eigenvalues provided that we have certain priori information
on the topology. Thus, conditions (26) and (41) can provide a
general guideline for designers to choose the controller gains.
In addition, there exist some efforts to estimate the eigenvalues
or even reconstruct the network topology in a distributed sense
(see [37], [38]).

TABLE I

PARAMETERS IN SIMULATIONS

IV. SIMULATION RESULTS AND DISCUSSION

Numerical simulations with a platoon of passenger cars are
conducted to verify the main results in this paper. In the
following simulations, the parameters, including the inertial
lag, controller gains, and initial states are shown in Table I. For
platoons under the UIF topology, the controller gains shown
in Table I satisfy Theorems 1 (1.1) and 2 (2.1). Thus, the
closed-loop stability is always ensured. The acceleration or
deceleration of the leader can be viewed as the disturbance to
the platoon. The leader is set to run along

v0 =

⎧⎪⎨
⎪⎩

20 m/s t ≤ 5 s

20 + 2t m/s 5 s < t ≤ 10 s

30 m/s t > 10 s.

In this section, we demonstrate both the stability margin
and transient performance for platoons under different UIF
topologies. The transient performance corresponds to the
aforementioned scenario: the leader’s speed changes from one
steady value to another, then we observe the state tracking
errors of the followers during the transient process.

The stability margin is used to characterize the platoon
scalability. The measure of transient performance is defined
in (54)–(56), as suggested in [39].

Definition 7: Global transient performance index

Eg = lim
T →∞

1

N

N∑
i=1

∫ T

0

1

2
(x̃i − x̃i−1)

T R (x̃i − x̃i−1) (54)

where R = diag{ks, kv, ka} represents that the control gains
are used as the weighting factors. Eg can reflect the global
tracking performance during the transient process. We also
define the local tracking performance by disregarding the
tracking error with respect to the leader.

Definition 8: Local transient performance index

El = lim
T →∞

1

N − 1

N∑
i=2

∫ T

0

1

2
(x̃i − x̃i−1)

T R(x̃i − x̃i−1). (55)

An index called convergence performance index is defined
to characterize the settling time, i.e., the minimum time after
which the state error becomes sufficiently small.
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Fig. 5. Stability margin for a platoon under UIF topology with different tree
depths c and local communication range h.

Fig. 6. Comparison of Eg , El , and Tc for a platoon under strong connected
UIF topology with different sizes N and tree depths c.

Definition 8: Convergence performance index

Tc = min
T1

(
max

i={1,...,N},t>T1
|εs,i | < δ

)
. (56)

In numerical simulations, the parameter T in (54) and (55)
is chosen to be sufficiently large such that all the errors die
out (T = 2 × 103 s for computation). Parameter δ in (56) is
set as δ = 0.1 m.

A. Simulations for Platoon Under UIF Topology With
Linear Identical Controllers

To demonstrate the influence of tree depth c and local
communication range h on the stability margin of platoon (17),
we fix the platoon size to be N = 50. As shown in Fig. 5,
we can obviously observe that it is the tree depth c rather
than local communication range h that dominates the scaling
trend of the stability margin. Even though the information
flow topology among the followers is strongly connected (i.e.,
h = 49 in this case), the stability margin is still close to zero,
unless enough followers are pinned to the leader (i.e., small
tree depth c). This result confirms Theorem 1 (1.2).

To demonstrate the scaling trend of performance indexes
(i.e., Eg, El , Tc) for platoons under a strongly connected
topology with two different tree depths (one is constant,

Fig. 7. Stability margin for UIF topology with different numbers of followers
pinned to the leader and different tree depths (see the topology shown
in Fig. 4).

Fig. 8. Stability margin for BD topology with different asymmetric degrees
(see the topology in Fig. 3).

Fig. 9. Performance of a platoon under BD topology with symmetric and
asymmetric controllers. (a) Convergence time. (b) Peak value.

i.e., c = 4, and the other is of the same order as the platoon
size, i.e., c = N), we vary the platoon size N from 4 to 50.
As shown in Fig. 6, the tracking errors among the followers
(see El in Fig. 6) during the transient process in all cases are
close to zero and the corresponding scaling trend is very well.
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Fig. 10. Space errors for a homogeneous platoon under BD topology with different asymmetric degrees ε. (a) ε = 0 (symmetric). (b) ε = 0.2. (c) ε = 0.4.
(d) ε = 0.6.

Actually, in simulations, we have seen that the platoon looks
like one enlarged follower in tracking the leader’s trajectory,
indicating that the platoon under the strongly connected UIF
topology can quickly regulate local spacing errors. However, if
only the first follower is pinned to the leader (i.e., tree depth
c = N), then the scaling trend of the global transient per-
formance index Eg becomes worse. Actually, in simulations,
we have seen that the first follower’s spacing error oscillates
larger, and convergence becomes slower as the platoon size
increases, indicating that the information flow among the
followers is beneficial for regulating local behavior (good for
local safety), but does not contribute to the scalability of
large platoons. Meanwhile, if there is one follower that can
obtain the leader’s information every four followers (i.e., tree
depth c = 4), then the scalability performance is significantly
improved.

Fig. 7 corroborates the statements in Remark 5 that even
though �(N) = O(N), the stability margin may still decay
to zero as the platoon size increases. The simulation results
in Figs. 6 and 7 demonstrate that ensuring a constant tree depth
in the UIF topology, platoon scalability can be guaranteed.

B. Simulations for Platoon Under BD Topology With
Linear Asymmetric Controller

As shown in Fig. 8, the stability margin of the platoon
with asymmetric controllers is indeed bounded away from
zero and independent of with the platoon size, which confirms
to Theorem 2 (2.2). To demonstrate the scaling trend of
performance indexes for a platoon under the BD topology
with different asymmetric degrees (i.e., ε = 0, 0.2, 0.4, 0.6),
we vary the platoon size N from 2 to 30.

As shown in Fig. 9, the convergence time for the platoon
with symmetric control, i.e., ε = 0, becomes large as the
platoon size increases, whereas the convergence time for the
platoon with asymmetric control increases with a relatively
lower magnitude. However, the asymmetric control also intro-
duces large peak during the transient process.

Fig. 10 shows the spacing errors for the homogeneous
platoon under the BD topology with different asymmetric
degrees ε. It is assumed that there are 30 followers in
the platoon, i.e., N = 30. The exponential stability and

convergence speed have been improved a lot due to the
asymmetric degree ε. However, asymmetric control indeed
introduces large peak phenomena during the transient perfor-
mance, which is detrimental to the local safety of the platoon.

The stability margin only characterizes the global stability
and cannot guarantee the transient performance. Even though
asymmetric control can bound the stability margin away from
zero, for actual implementation of the platoon system, we
should take the transient performance into account. How to
balance these performance criterions need further research.

V. CONCLUSION

From the viewpoint of both the information flow topology
and decentralized controllers, this paper studies the scalability
limitation of a homogenous platoon moving in a rigid forma-
tion and provides two basic ways to obtain scalable platoon
systems, i.e., enlarging information topology and employing
asymmetric control. A third-order state-space model for
vehicle longitudinal dynamics is first derived using feedback
linearization, which accommodates the inertial lag of power-
train dynamics. Graph techniques are adopted to model the
UIF topology among vehicles, including both radar and com-
munication based. Linear identical decentralized controllers
for general UIF topologies and asymmetric decentralized con-
trollers for the BD topology are designed, leading to platoon
closed-loop dynamics under constant distance policy. The
main contributions are as follows.

1) The first main theorem explicitly establishes the sta-
bilization thresholds of linear identical decentralized
control gains for homogeneous platoons intercon-
nected by UIF topologies using matrix theory and the
Routh–Hurwitz stability criterion. Meanwhile, using the
Rayleigh–Ritz theorem, it is pointed out that the stability
margin of a platoon under the UIF topology will not
decay to zero as the size of the platoon increases only
if there are a large number of followers, i.e., O(N),
pinned to the leader, which means the information flow
among followers do not contribute to the scalability
of a platoon. Extending the information flow topology
to reduce the tree depth is one major way to achieve
scalable platoon systems.
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2) The second main theorem shows the benefit of employ-
ing the asymmetric controller architecture and points
out that the stability margin of a platoon under the
BD topology with asymmetric control can be bounded
away from zero and independent of the platoon size.
Employing the asymmetric controller architecture is
another way to obtain scalable platoon systems from the
viewpoint of getting constant stability margins.

Topics for future research include studies about the influ-
ence of communication delay, packet loss, and heterogeneous
dynamics on the stability margin. The robustness issue, like
parametric and model uncertainty, is another important topic
on the platoon control and worth further research. In addition,
there is a need to extend the analysis to incorporate the
transient performance into the asymmetric controller design.
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